===== 2.3 初等函数 ===== ==== 1. 基本初等函数 ==== * **多项式与有理函数:** $$ P(x) = \sum_{i=0}^{n} a_i x^i, \quad f(x) = P(x) / Q(x) \tag{17, 18} $$ * **幂函数 $x^\alpha$:** * 若 $\alpha = 1/n$,定义为算术根: $$ x^{1/n} = \sup \{\xi : \xi^n \leqslant x\} \quad (x > 0) \tag{19} $$ * 若 $\alpha$ 为无理数: $$ x^\alpha = \begin{cases} \sup \{x^r : r \in \mathbb{Q} \cap (0, \alpha)\} & (x \geqslant 1) \\ [(x^{-1})^\alpha]^{-1} & (0 < x < 1) \end{cases} \tag{20} $$ * **指数函数 $a^x$:** * $a^x = \sup \{a^r : r \in \mathbb{Q}, r < x\}$ (当 $a>1$)。 * 性质:$a^{x+y} = a^x a^y$。 * **对数函数 $\log_a x$:** * 定义为 $a^\xi = x$ 的根。 * 公式: $$ a^{\log_a x} = x \tag{24} $$ $$ \log_b x = \log_b a \log_a x, \quad \log_a x^\alpha = \alpha \log_a x \tag{25} $$ $$ x^\alpha = a^{\alpha \log_a x} \tag{27} $$ * **三角函数:** * $\sin x$ 为周期 $2\pi$ 的奇函数。 * 反三角函数关系: $$ \arccos x = \frac{\pi}{2} - \arcsin x \quad (|x| \leqslant 1) \tag{29} $$ $$ \operatorname{arccot} x = \frac{\pi}{2} - \arctan x \quad (|x| < \infty) $$ ==== 2. 双曲函数 (Hyperbolic Functions) ==== **定义:** $$ \begin{cases} \operatorname{sh} x = \frac{e^x - e^{-x}}{2} \\ \operatorname{ch} x = \frac{e^x + e^{-x}}{2} \\ \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} \\ \operatorname{coth} x = \frac{1}{\operatorname{th} x} \quad (x \neq 0) \end{cases} \tag{30} $$ **恒等式:** $$ \begin{cases} \operatorname{sh}(x \pm y) = \operatorname{sh} x \operatorname{ch} y \pm \operatorname{ch} x \operatorname{sh} y \\ \operatorname{ch}(x \pm y) = \operatorname{ch} x \operatorname{ch} y \pm \operatorname{sh} x \operatorname{sh} y \end{cases} \tag{31} $$ $$ \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1 \tag{32} $$ $$ \begin{cases} \operatorname{sh} 2x = 2 \operatorname{sh} x \\ \operatorname{ch} 2x = 2 \operatorname{ch}^2 x - 1 = 2 \operatorname{sh}^2 x + 1 \end{cases} \tag{33} $$ **反双曲函数 (对数表达式):** * **反双曲正弦:** $$ \operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1}) \quad (x \in \mathbb{R}) \tag{34a} $$ * **反双曲余弦:** $$ \operatorname{arch} x = \ln(x + \sqrt{x^2 - 1}) \quad (x \geqslant 1) \tag{34b} $$ * **反双曲正切:** $$ \operatorname{arth} x = \frac{1}{2} \ln \frac{1+x}{1-x} \quad (|x| < 1) \tag{34c} $$ * **反双曲余切:** $$ \operatorname{arcoth} x = \frac{1}{2} \ln \frac{x+1}{x-1} \quad (|x| > 1) \tag{34d} $$