差别
这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录 前一修订版 | |||
| 数学分析:实数理论 [2026/01/09 13:18] – [1. 加法与乘法定义] 张叶安 | 数学分析:实数理论 [2026/01/09 13:26] (当前版本) – 张叶安 | ||
|---|---|---|---|
| 行 238: | 行 238: | ||
| $$ \sup_{x \in X} [f(x)g(x)] \leqslant \sup_{x \in X} f(x) \sup_{x \in X} g(x) \tag{16} $$ | $$ \sup_{x \in X} [f(x)g(x)] \leqslant \sup_{x \in X} f(x) \sup_{x \in X} g(x) \tag{16} $$ | ||
| - | ===== 2.3 初等函数 ===== | ||
| - | ==== 1. 基本初等函数 ==== | ||
| - | |||
| - | * | ||
| - | |||
| - | $$ P(x) = \sum_{i=0}^{n} a_i x^i, \quad f(x) = P(x) / Q(x) \tag{17, 18} $$ | ||
| - | |||
| - | * | ||
| - | * 若 $\alpha = 1/ | ||
| - | $$ x^{1/n} = \sup \{\xi : \xi^n \leqslant x\} \quad (x > 0) \tag{19} $$ | ||
| - | * 若 $\alpha$ 为无理数: | ||
| - | $$ | ||
| - | x^\alpha = \begin{cases} | ||
| - | \sup \{x^r : r \in \mathbb{Q} \cap (0, \alpha)\} & (x \geqslant 1) \\ | ||
| - | [(x^{-1})^\alpha]^{-1} & (0 < x < 1) | ||
| - | \end{cases} \tag{20} | ||
| - | $$ | ||
| - | |||
| - | * | ||
| - | * $a^x = \sup \{a^r : r \in \mathbb{Q}, r < x\}$ (当 $a> | ||
| - | * | ||
| - | |||
| - | * | ||
| - | * | ||
| - | * | ||
| - | $$ a^{\log_a x} = x \tag{24} $$ | ||
| - | $$ \log_b x = \log_b a \log_a x, \quad \log_a x^\alpha = \alpha \log_a x \tag{25} $$ | ||
| - | $$ x^\alpha = a^{\alpha \log_a x} \tag{27} $$ | ||
| - | |||
| - | * | ||
| - | * $\sin x$ 为周期 $2\pi$ 的奇函数。 | ||
| - | * | ||
| - | $$ \arccos x = \frac{\pi}{2} - \arcsin x \quad (|x| \leqslant 1) \tag{29} $$ | ||
| - | $$ \operatorname{arccot} x = \frac{\pi}{2} - \arctan x \quad (|x| < \infty) $$ | ||
| - | |||
| - | ==== 2. 双曲函数 (Hyperbolic Functions) ==== | ||
| - | |||
| - | **定义:** | ||
| - | |||
| - | $$ | ||
| - | \begin{cases} | ||
| - | \operatorname{sh} x = \frac{e^x - e^{-x}}{2} \\ | ||
| - | \operatorname{ch} x = \frac{e^x + e^{-x}}{2} \\ | ||
| - | \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} \\ | ||
| - | \operatorname{coth} x = \frac{1}{\operatorname{th} x} \quad (x \neq 0) | ||
| - | \end{cases} \tag{30} | ||
| - | $$ | ||
| - | |||
| - | **恒等式:** | ||
| - | |||
| - | $$ | ||
| - | \begin{cases} | ||
| - | \operatorname{sh}(x \pm y) = \operatorname{sh} x \operatorname{ch} y \pm \operatorname{ch} x \operatorname{sh} y \\ | ||
| - | \operatorname{ch}(x \pm y) = \operatorname{ch} x \operatorname{ch} y \pm \operatorname{sh} x \operatorname{sh} y | ||
| - | \end{cases} \tag{31} | ||
| - | $$ | ||
| - | |||
| - | $$ \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1 \tag{32} $$ | ||
| - | $$ | ||
| - | \begin{cases} | ||
| - | \operatorname{sh} 2x = 2 \operatorname{sh} x \\ | ||
| - | \operatorname{ch} 2x = 2 \operatorname{ch}^2 x - 1 = 2 \operatorname{sh}^2 x + 1 | ||
| - | \end{cases} \tag{33} | ||
| - | $$ | ||
| - | |||
| - | **反双曲函数 (对数表达式):** | ||
| - | * | ||
| - | $$ \operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1}) \quad (x \in \mathbb{R}) \tag{34a} $$ | ||
| - | * | ||
| - | |||
| - | $$ \operatorname{arch} x = \ln(x + \sqrt{x^2 - 1}) \quad (x \geqslant 1) \tag{34b} $$ | ||
| - | |||
| - | * | ||
| - | $$ \operatorname{arth} x = \frac{1}{2} \ln \frac{1+x}{1-x} \quad (|x| < 1) \tag{34c} $$ | ||
| - | * | ||
| - | $$ \operatorname{arcoth} x = \frac{1}{2} \ln \frac{x+1}{x-1} \quad (|x| > 1) \tag{34d} $$ | ||