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Abstract

The optimum structural design is a common focus on engineering and academic
circles at home and abroad in recent years, it combines mathematics, mechanics and
computer technology into a whole, making structure design toward a more economical,
safe and reasonable direction. Because of its low cost, reasonable mechanical
performance, easy to be standardized constructed in today's construction works, the
frame-shear wall structure is widely applied, so the optimization of the structure is
necessary. This problem has caused the attention of many structure designers.

A certain nine layers residential building with reinforced concrete frame-shear
frame structure in Handan is taken as an example, the constant load, live load and
earthquake function of the actual engineering situation is considered, then PKPM is
used for the traditional structure design, and then the related parameters from SATWE
computing results is extracted, such as axial compression ratio, period ratio,
displacement ratio, shear weight ratio, the ratio of rigidity-to-gravity, stiffness ratio and
displacement between layers, etc., and then compared to the current design
specification to verify the rationality of the parameters. Based on the designed
structure, finite element software ANSYS is used for numerical simulation, with the
beam and column section size and the thickness of the shear wall as design variables,
with the structure bearing capacity, interlayer displacement angle as constraint
conditions, and under the bi-directional seismic action conditions, the minimum
consumption of the total building materials is taken as optimized target. Through the
static analysis, seismic response spectrum analysis and optimization analysis, the total
steel decreases by 6.68%, the concrete amount decreased by 7.26% after optimization.
A new design model is established by PKPM software with the optimal section size,
and the various parameters is able to meet the requirements, at the same time this
optimization scheme is economic.

The numerical analysis model based on the engineering examples is fully
compatible with the related structural design specification requirements. The analysis
and optimization method for the model can be applied to the structure design, and
provide some reference for the optimization of reinforced concrete structures and other

related structures.



Keywords: frame-shear wall structure; optimization design; static analysis;

earthquake spectrum; optimization analysis
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Fig. 3-1 Frame-shear wall structure
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Fig. 3-3 Mechanical characteristics of different structures
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Fig. 3-4 Cooperative work of frame-shear wall structure
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3-1

Table3-1 The minimum shear coefficient

6 7 8 9
3 56 0.008 0.016(0.024) 0.032(0.048) 0.064
5.0s 0.006 0.012(0.018) 0.024(0.036) 0.048
3-2
Table3-2 The minimum shear coefficient
0.65 0.75 0.85
- - 0.75 0.85 0.90 0.95
0.60 0.70
3.3

Table3-3 The limit value of the elastic story drift

[6,]

1/550
1/800

3-4

Table3-4 The limit value of the elastoplastic story drift

[6,]

1/50
1/100

3.5

33
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4.1

4.1.1

30.200m 7

0.15g B
0.45kN/m’
50 4-1
4-2 4-3
4-1 (kN/m?)

Table 4-1 The standard value of uniformly distributed live load

2.0 2.5 3.5 7.0 0.5 1.0 kN 0.5kN/m

42

Table 4-2 The structural elevation and floor height

9 () 27.250 2.900
9 () 24.350 2.900
8 21.450 2.900
7 18.550 2.900
6 15.650 2.900
5 12.750 2.900
4 9.850 2.900
3 6.950 2.900
2 3.950 3.000
1 -0.050 4.000

35



4-3

Table 4-3 The concrete strength

C30 C30 C30
4.1.2
4-1
- 100mm
600 mmx*x600 mm 300 mmx*x600 mm
250 mmx*500 mm HRB400 HRB400
|50 2850 | 2450 | M50 2700 3700 | 3700 w0 | 3w 3700 | 2450 | M50 | 9850 2850 |

=——:=

Fig. 4-1 The floor plan of the structure

4.1.3

(13 2

PKPM SATWE
42 43 44

36



=1 =1 =l =1 =
) [ oo ) 0y
il B Frwl Bl Fonl el
= ) [ ) 1) [ oy [ &)
(vl (] Il (] loal (vl
o [ ) L4 oy 0 L= )
e ul el e nl el Fral
= = = =
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Fig. 4-2 The first layout of the shear wall
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Fig. 4-4 The third layout of the shear wall

4.2

4.2.1

PKPM
44 45 4.6

37




4-4

Table 4-4 The mass center stiffness center of the program 1

X Y X Y

68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.963
68.787 52.997 68.783 52.962
68.787 52.998 68.782 52.948

—_— N W R W N O 0 O

4-5
Table 4-5 The mass center stiffness center of the program?2

X Y X Y

68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.959
68.787 52.994 68.781 52.958
68.787 52.994 68.779 52.948

—_— N W R W N N 0 O

4-6

Table 4-6 The mass center stiffness center of the program 3

X Y X Y

68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.960
68.787 52.994 68.781 52.959
68.787 52.995 68.778 52.948

—_— N W R N N 0 0 O

38



4.2.2

47 4-8 49

4-7
Table 4-7 The drift stiffness ratio of the adjacent layers in program 1

0.753 0.767 1.647 1.739
1.000 1.000 1.897 1.863

70%
X Y X Y

9 0.637 0.597 1.000 1.000
8 0.820 0.777 2.244 2.392
7 0.891 0.851 1.743 1.840
6 0.912 0.877 1.603 1.678
5 0.908 0.875 1.566 1.630
4 0.882 0.850 1.516 1.633
3 0.849 0.822 1.555 1.669
2

1

4-8
Table 4-8 The drift stiffness ratio of the adjacent layers in program 2

70%
X Y X Y

0.583 0.615 1.000 1.000
0.758 0.796 2.450 2.325
0.831 0.871 1.885 1.795
0.853 0.896 1.720 1.640
0.848 0.895 1.675 1.594
0.818 0.874 1.686 1.565
0.776 0.850 1.747 1591

[N IS R ¥, e SN e <o)

0.682 0.807 1.840 1.661

[an—

1.000 1.000 2.096 1.770

39



4-9
Table 4-9 The drift stiffness ratio of the adjacent layers in program 3

70%
X Y X Y

0.598 0.612 1.000 1.000
0.774 0.793 2.391 2.335
0.848 0.868 1.847 1.802
0.872 0.894 1.685 1.645
0.869 0.893 1.639 1.599
0.842 0.870 1.645 1.574
0.810 0.844 1.696 1.602

[\ I VS I . =) U N e < BN

0.734 0.783 1.765 1.679

—_

1.000 1.000 1.947 1.824

70%

4223
PKPM

X EJ,/GH* =20.30

Y EJ,/GH? =38.60
EJ,/GH? 1.4 5.4.4
EJ,/GH® 2.7

X EJ,/GH* =27.45

Y EJ,/GH* =41.97
EJ,/GH® 1.4 54.4
EJ,/GH® 2.7

X EJ,/GH?=27.92

Y EJ,/ GH?* =36.02

EJ,/GH® 1.4 54.4

40



EJ,/GH® 2.7

4.2.4
4-10
4-10 (%)
Table 4-10 The shear-weight ratio of the three programs
X Y X Y X Y
9 15.08 18.48 18.14 18.16 17.71 18.23
8 13.68 16.94 16.35 16.80 16.11 16.82
7 12.48 15.53 14.77 15.51 14.67 15.51
6 11.46 14.26 13.42 14.34 13.41 14.32
5 10.59 13.14 12.27 13.28 12.32 13.25
4 9.80 12.11 11.27 12.29 11.35 12.25
3 9.07 11.15 10.35 11.34 10.45 11.30
2 8.35 10.22 9.47 10.41 9.57 10.36
1 7.57 9.23 8.54 9.40 8.65 9.36
5.2.5
Viwi = 212G, (4-1)
=1
A 1.80% X
Y 1.80%
4.2.5
15 4-11
A A 0.9
X 99%

41



4-11
Table 4-11 The free vibration period and effective mass coefficient of the structure

X Y X Y
0.6837 0.4828 0.3159 0.462 99.95% 99.59%
0.5601 0.4705 0.4444 0.793 99.57% 99.59%
0.5658 0.5062 0.5592 0.988 99.55% 99.55%
4.2.6
C ) C )
4-12
Table 4-12 The max axial compression ratio of the column and shear wall
9 0.06 0.01 0.06 0.01 0.05 0.01
8 0.12 0.02 0.12 0.03 0.09 0.03
7 0.19 0.03 0.18 0.04 0.14 0.04
6 0.25 0.05 0.25 0.06 0.18 0.06
5 0.32 0.06 0.31 0.08 0.22 0.08
4 0.38 0.07 0.38 0.10 0.26 0.10
3 0.45 0.09 0.45 0.11 0.31 0.12
2 0.52 0.10 0.51 0.13 0.42 0.14
1 0.59 0.12 0.58 0.15 0.62 0.15

4



4.2.7

4-13

Table 4-13 The max horizontal displacement of the structure

X Y X Y X Y

9 15.57 9.97 13.00 9.34 12.95 1.67
8 14.24 8.94 11.44 8.49 11.57 1.52
7 12.70 7.82 9.80 7.53 10.06 1.36
6 10.96 6.61 8.12 6.46 8.47 1.17
5 9.07 5.36 6.42 5.32 6.83 0.97
4 7.06 4.09 4.77 4.13 5.18 0.77
3 5.02 2.86 3.23 2.94 3.59 0.55
2 3.08 1.73 1.87 1.83 2.15 0.35
1 1.35 0.76 0.77 0.83 0.92 0.16

4.3

43

2
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5.1 ANSYS

ANSYS

ANSYS

70%

ANSYS
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ANSYS

ANSYS
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CAD

ANSYS

ANSYS
ANSYS

ANSYS
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8.
5.1.2 ANSYS
ANSYS
5-1 ANSYS
Nain Nemu (%) |
Preferences
Preprocessor
Solution
General Postproc
TimeHist Postpro
RON Tool
Prob Design
Radiation Opt
Session Editor
Finish
5-1 ANSYS
Fig. 5-1 The main menu of ANSYS
Preprocessor—
Solution—
General Postproc—
TimeHist Postpro—
ROM Tool—
Prob Design—
Radiation Opt—
ANSYS
1.
ANSYS
CAD

46

CAD



5.2 ANSYS

(Beam) (Plane)
(Fluid) ~ ANSYS

5.2.1 BEAMA4

BEAM4
3
BEAM4

(Link)
(Mass) (Shell)

47

(Block)
(Pipe)



1. BEAM4 5-2 5-1

{If node K is omittad and = = 07, . K (optional)
the element vy axis is paralle to
the global X-Y plane.}

TKZ

'{Eﬁ I_._ ?KY_PI T3T7
5-2 BEAM4-
Fig.5-2 BEAM4-3D elastic beam element

5-1 BEAM4
Table.5-1 BEAM4 real constant

1 AREA
2 127
3 IYY
4 TKZ z
5 TKY Y
6 THETA X
7 ISTRN
8 IXX
9 SHEARZ z
10 SHEARY Y
11 SPIN ( KEYOPT(7)=1 )
12 ADDMAS /
2. BEAMA4 5-2.
3.
(1) 0
0
(2)
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Table.5-2 BEAM4 element ouput definitions

5-2 BEAMA4

EL
NODES
MAT
VOLU

XC YC

PRES
SDIR
SBYT
SBYB
SBZT
SBZB
SMAX
SMIN
EPELDIR
EPELBYT
EPELBYB
EPELBZT
EPELBZB
EPINAXL

MFOR(X Y

MMOM(X Y 2)

zC

7)

+Y
Y
+Z

X
X

< << K < X|0

< w <K<K <K <3

€)
(4)

5.2.2 SHELL63

5-4

SHELLG63

SHELLG63
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kL

¥ v Triangular Dpﬁ;n
5-3 SHELL63
Fig.5-3 SHELL63 element geometry description
5-3 SHELL63
Table.5-3 SHELL63 unit real constant
1 TK() I
2 TK(®J) J
3 TK(K) K
4 TK(L) L
5 EFS
6 THETA X
7 RMI
8 CTOP
9 CBOT
10...18 (Blank) --
19 ADMSUA /
5-4 SHELL63
Table.5-4 SHELL63 element ouput definitions
o R
EL Y Y
NODES Y Y
MAT Y Y
AREA Y Y
XC YC ZC Y 1
PRES Y Y

50



TEMP
X Y XY) X Y XY
MX Y XY) X Y XY
LOC
S X Y Z XY
S:s1 2 3
S:INT
S:EQV
EPEL:X Y Z XY
EPEL:EQV

< KKK K K K XK XKIO

e A e e e S S

5.3 ANSYS

5.3.1

BEAM4 SHELLG63

3.0e10N/m?>

2700kg/m’

/prep7

et 1 beam4

keyopt 1 2 1 !

et 2 shell63

keyopt 2 3 2 !

sectype 1 beam rect

secdata 0.3 0.6 1300X600
Isecoffset user 0 0.3

sectype 2 beam rect

secdata 0.25 0.5 1250X500
Isecoffset user 0 0.25

sectype 3 beam rect

secdata 0.6 0.6 1600X600
sectype 4 shell
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secdada 0.3
sectype 5 shell
secdada 0.1

mp ex 1 3.0el0
mp prxy 1| 0.2
mp dens 1 2700

view 1 1 1 1

1C30

/Nup 1 z
/rep fast
532 -
ELEMENTS ANSRYuss
OCT 11 2014
11:20:31
frame
5-4
Fig.5-4 The model of frame-shear wall
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ANSYS
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1. ANSYS

)
(2) ( )
1.5kN/m?
2.8 kN/m?
10 kN/m’
12 kKN/m 8.7 kN/m
9.8m/s”
3)
2.0 kN/m’
0.5 kN/m* 0.25 kN/m* 0.75 kN/m*

LINE STRESS iy
SIEE=1 0CT 12 2014
sUB =1 21:12:03
TTME=1
IMOMENT JMOMENT
MIN =-360460
ELEM=8281
MEX =58728.8
ELEM-4094

| .

~360460 ~267307 —174154 “81000.8 12152.3

—313884 ~220730 -127577 ~34424.3 58728.8

frame

5-5
Fig.5-5 The bending moment diagram of the structure
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T

LINE STRESS ANSRY{.‘SS
STER=1 OCT 12 2014
U8 =1 21:41:13
TIME=1

ISHEARR JSHERR
MIN =-40517.6
ELEM=5231

MAX =40517.6
ELEM=4094

-40517.8 -22509.8 —-4501.395 13505.9 31513.7
-31513.7 -13505.9 4501.395 22509.8 40517.8

frame

5-6
Fig.5-6 The shear force diagram of the beam

! ANSYS
LINE STRESS e
SIEE=1 OCT 12 2014
B -1 20:27:12
TTME=1
IFORCE  JFORCE
MTH =-.137E+07
ELEM=443
MBEX =29038.9
ELEM=3904

-.1372+07 -.106E+07 -745245 -435832 -125333
-.1Z1E+07 -300823 -530863 -2803815%5 23038.3
frame

5-7
Fig.5-7 The axial force diagram of the column
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5.5

ELEMENT SOLUTICN ANSRng
STER=1 0CT 12 2014
B =30 22:40:53
FREQ=17.1202
SINT (HORVE)
DMK =.002948
SN =3.20382
SMX =.38TE+07
3.20382 260510 L172E+07 L2Z58E+07 L344E407
430256 .123E+07 .215E+07 .301E+07 .387E+07
frame
Fig.5-8 The stress intensity diagram

DISELACEMENT AN SFL%
STEP=1 OCT 12 2014
SUB =30 22:46:41

FREQ=17.1202
DME =.002948

frame

5-9

Fig.5-9 The deformed shape diagram of the structure

55




ANSYS

/solu

antype 2

modopt lanb 30 30

mxpand 30 yes

lumpm off

solve

fini

ANSYS 30
5-5 5-6
55 30
Table.5-5 The Frequencies and Period of 30 Block Landczos
(HZ) (S) (HZ) (S)

1 1.7318 0.57743 16 15.523 0.06442
2 2.5532 0.39167 17 16.098 0.06212
3 3.8297 0.26112 18 16.145 0.06194
4 6.2132 0.16095 19 16.311 0.06131
5 6.7612 0.14790 20 16.496 0.06062
6 10.299 0.09710 21 16.601 0.06024
7 11.869 0.08425 22 16.842 0.05938
8 11.925 0.08386 23 16.883 0.05923
9 12.307 0.08125 24 17.091 0.05851
10 12.860 0.07776 25 17.140 0.05834
11 12.944 0.07726 26 17.239 0.05801
12 13.852 0.07219 27 17.303 0.05779
13 14.372 0.06958 28 17.356 0.05762
14 14.519 0.06888 29 17.360 0.05760
15 15.165 0.06594 30 17.455 0.05729
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5-6

Table.5-6 The Modal Participation Factor from the Structure

X Y z X Y Z
1 1660.8 0.10593E-07  0.11405E-09 16  0.31722E-06 0.54894 440.86
2 .0.10639E-07 1659.8 1.4207 17 -0.17824E-08 -0.26400 -35.881
3 -5.1087 0.64933E-08  0.19345E-10 18 13.568 0.20174E-06  -0.44500E-07
4 -730.93 -0.19281E-08  -0.12981E-09 19  -0.26128E-08 6.3944 80.631
5 -0.18243E-08 700.59 -6.5094 20 0.12442E-09 -9.8989 -7.7601
6 0.13874E-09 325.94 13.751 21 0.42412E-09 0.60836 -78.805
7 -0.17456E-09 -9.6256 1207.0 22 3.4842 0.71364E-06  -0.13099E-06
8 0.25255E-08 102.24 50.761 23 0.13249E-09 -0.55746 -120.25
9 433.07 0.38122E-08  -0.15234E-08 24 -0.40879E-10 4.7758 281.13
10 -37.886 -0.76413E-07  0.11197E-07 25 -0.65207E-10 11.326 404.72
11 8.1732 -0.42914E-07  0.41313E-07 26 -1.9811 0.54919E-05  -0.10108E-05
12 .0.78767E-06 136.83 105.33 27 .0.23998E-10 3.3926 46.617
13 .0.26331E-05 10.871 -544.86 28 _0.63195E-10 -0.25129 -36.005
14 0.14910E-04 -176.37 32.444 29 1.7791 0.29029E-06  -0.54729E-07
15 2.2010 0.13356E-06  0.34075E-05 30 -5.0890 0.14171E-04  -0.26075E-05
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ANSYS

DISFLACEMENT R14.5
STEP=1 OCT 12 2014
STB =1 23:25:55
FREQ=1.71195
DMK =1.00582

frame

5-10
Fig.5-10 The First Mode

DISELACEMENT AN SRqug
STEE=1 0CT 12 2014
SUB =2 23:42:42
FREQ=2.52747

DMK =1.00352

frame

5-11
Fig.5-11 The Second Mode
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ANSYS

DISPLACEMENT R14.5
STEE=1 OCT 12 2014
SUB =3 23:52:33
FRE(Q=3.79306
DMX =1.04037

frame

5-12
Fig.5-12 The Third Mode

DISFLACEMENT R14.5
STEE=1 OCT 12 2014
5UB =4 23:57:46

FEEQ=6.15329
DME =1.07268

frame

5-13
Fig.5-13 The Forth Mode
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5.6

a,, =0.12 I
(T, =0.4s)
a=0.66T +0.054, 0<T<0.1
a=0.12, 0.1<T <0.45 (5-1)
0.9
a:(%j x0.12, 0.45<T<2.25
(5-1) 5-7
5-7
Table.5-7 Seismic Accelerates Response Spectrum
(S) (S)

1 0.57743 0.09588 16 0.06442 0.09652
2 0.39167 0.45 17 0.06212 0.09500
3 0.26112 0.45 18 0.06194 0.09488
4 0.16095 0.45 19 0.06131 0.09446
5 0.14790 0.45 20 0.06062 0.09401
6 0.09710 0.11809 21 0.06024 0.09376
7 0.08425 0.10961 22 0.05938 0.09319
8 0.08386 0.10935 23 0.05923 0.09309
9 0.08125 0.10763 24 0.05851 0.09262
10 0.07776 0.10532 25 0.05834 0.09250
11 0.07726 0.10499 26 0.05801 0.09229
12 0.07219 0.10165 27 0.05779 0.09214
13 0.06958 0.09992 28 0.05762 0.09203
14 0.06888 0.09946 29 0.05760 0.09202
15 0.06594 0.09752 30 0.05729 0.09181
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5.7

ANSYS
ANSYS

1: 12x  +1.4x
2 12x( +0.5x
3 12x( +0.5%

58 -

5.8.1

)+1.3%
)-1.3x
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PKPM

H{=500mm H,=500mm
h1=600mm b1=300mm
h2=500mm b2=250mm
b3=500mm
5.8.2
C(X)=Cs+C, (5-2)
C(X)
CS
C, = C;’ x G (5-3)
Cy—— 3000 /t
Gy Gy =pVyg
yor PKPM
|/
Vs 7.8t/m’
C(’
Ce= Cg xVe (5-4)
c? 330 /m’
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5.8.3

250mmx500mm

(1)

)

€)

(4)

(1)

1/4

300mmx600mm
1/10~1/18
200mm
(GB50010-2010)6.2.10

1 X - .
W< = {alfcbx(ho - E} + AR - a)}

Y re

v, <

x<Ehy,x>2a,

(GB50010-2010) 6.3.4 11.3.4

1

—{0.42 fbh, + fyvﬂho}
S

Y rE

p: . mein

(GB50010-2010)6.2.17

Nsfafbes fid-od~(c~1,)4,~0,4)]

Y re

Ne < alfcbx(ho —%]Jrfy‘A; (h—d) (s~ 1.) 4, (h~a,)

e=e+h/2—a

e =¢,t+e,

(2)

1143 2
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(5-6)

(5-7)

(5-8)

(5-9)



3)

A>2
AL2

4)

3.

H

4,
Au,

Vo<—

c =

GB50010 - 2010 11.4.6

VSI

7/RE

. (0.2 1.bh,)

V. <——(0.158.f.bh,)

VRE

(GB50010-2010)11.4.7

1 |1.05
|:Eftbh0 +f

Y RE

300mm

(GB50011 - 2010)5

64

A

1/1000

5.1

™ . +0.056N
S

1/20

|

(5-10)

(5-11)

(5-12)

(5-13)

(5-14)

160mm

(5-15)

1.0



[6.] 3-3
h

5.8.4 ANSYS

ANSYS ( )
( )

ANSYS (Random Designs) (Sub
Problem) (Gradient) (DV Sweeps) (Factorial)

(Single Run)

2. ( )

5.8.5 ANSYS

utility file write db log file , write batabase log
optimization Igw
2.
design opt analysis file assign assign analysis file

optimization Igw

65



4
2.5%
4.
5.
design opt opt database
tolerance, 2
6.
maximum iteration
7.
/OPT

OPANL,optimization Igw

OPVAR, H1, DV, 0.40, 0.50
OPVAR, H2, DV, 0.40, 0.50

OPVAR.Dmaxx,sv,0,0.005
OPVAR.Dmaxz,sv,0,0.005
OPVAR,ZY1,5v,0,0.90

OPVAR,mb,0OBJ,,.2
OPDATA,,,
OPLOOP,PREP,PROC,ALL
OPPRNT,ON

OPKEEP,ON

save

'Z
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30

200mm

400mm

youhuasheji opt

1/800%4.0m
1/800%4.0m

2.5%
0.35

convergence



OPTYPE SUBP !
OPSUBP30 7 ! 30

OPEXE !

5.8.6

26 5-8
5-8

Table.5-8 Design Variable Optimization Comparion

(mm) (mm) (mm)
h1 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 413.92 400
H2 500 476.84 500
b3 300 226.20 200
hl 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 413.92 400
H2 500 476.84 500
b3 300 226.20 200
hl 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 413.92 400
H2 500 476.84 500
b3 300 226.20 200
hl 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400

b2 250 200.00 200
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H1 500 413.92 400
H2 500 476.84 500
b3 300 226.20 200
h1 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 413.92 400
H2 500 476.84 500
b3 300 226.20 200
h1 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 401.52 400
H2 500 425.64 400
b3 300 210.35 200
h1 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 401.52 400
H2 500 425.64 400
b3 300 210.35 200
hl 600 438.69 450
b2 300 200.00 200
h2 500 406.35 400
b2 250 200.00 200
H1 500 401.52 400
H2 500 425.64 400
b3 300 210.35 200
hl 600 438.69 450
b2 300 200.00 200
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h2 500 406.35 400

b2 250 200.00 200
Hl1 500 401.52 400
H2 500 425.64 400
b3 300 210.35 200
5.8.7
ANSYS ANSYS
PKPM2010
1.
PKPM
X 8.64 Y 19.74
X 203 Y 38.6
2.
X 527% Y 7.44% (5.2.5)
) 1.80%
3.
X 1.0385 Y 0.6661 0.4193
0.4038 A A 0.9
4,
0.59 0.85
0.86
5. (59
5-9

Table.5-9 Material Consumption Optimization Comparion

® 142.925 133.377 -6.68%
m?) 1302.16 1207.67 -7.26%
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6.68%

ANSYS

7.26%

ANSYS
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