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Abstract

In recent years, earthquakes have occurred frequently all over the world, and reinforced
concrete shear wall, as the main lateral force-resistant components in high-rise structures, are
one of the most important seismic defense lines. Reinforced concrete shear wall under current
design methods are prone to brittle shear damage with insufficient ductility. Topology
optimization has good graphical evolution capability, which can objectively construct a
reasonable strut-and-tie model and then guide the design, providing a way out for the design of
reinforced concrete shear wall. Therefore, in this paper, proposes the evolutionary structural
optimization algorithm based on the low reversed cyclic loading, and on this basis, the
reinforcement design of reinforced concrete shear wall is conducted. The simulation
verification of the corresponding components is completed, and the influence of design
parameters on optimization are discussed. The main contents include:

Firstly, the optimization mathematical model based on linear elastic analysis and the
optimization mathematical model based on material nonlinear analysis are established
respectively, and the evolutionary structural optimization method of reinforced concrete shear
wall under low reversed cyclic loading based on finite element analysis of reinforced concrete
integrated elements model is proposed. Among them, the optimization method based on the
linear elastic analysis constructs the optimization sensitivity according to the strain energy to
maximize the structural stiffness under the set volume constraint, with the status of elements as
the design variable. The optimization method based on material nonlinear analysis constructs
the optimization sensitivity according to the element plastic strain energy to maximize the
structural energy dissipation under the set stress constraint with the status of elements as the
design variable. Four optimization cases of reinforced concrete shear wall based on linear
elastic analysis with unidirectional loading and repeated loading and nonlinear analysis with
unidirectional loading and repeated loading respectively. Comparison of four optimization
cases of reinforced concrete shear wall based on linear elastic analysis and nonlinear analysis
with unidirectional loading and repeated loading respectively. The results show that: The
topology results under repeated loading have a higher level of optimization than the symmetric
envelope topology results under unidirectional loading and are more suitable to guide the design;
the optimization level of topological results based on material nonlinear analysis is higher than
that of topological results based on linear elastic analysis; the evolutionary structural
optimization algorithm for reinforced concrete shear wall under repeated loads based on

nonlinear analysis can consider the material nonlinear properties exhibited by concrete beyond



the elastic phase, and which can effectively improve the energy dissipation capacity of
reinforced concrete shear wall.

Secondly, the topological results obtained from the evolutionary structural optimization
algorithm of reinforced concrete shear wall under repeated loads based on nonlinear analysis
guide the establishment of the strut and tie model, followed by the completion of the
reinforcement design, effectively integrating the topological optimization method into the
engineering design, forming a seismic design method for reinforced concrete shear wall based
on topological optimization&strut-and-tie model. Non-linear finite element verification and
simulation analysis of reinforced concrete shear wall confirm the advantages of the new method
of optimal design. The results show that: on the one hand, the optimized reinforcement shear
wall has higher utilization rate of reinforcement under low reversed cyclic loading, larger
bearing capacity, better energy dissipation capacity; on the other hand, the reasonable setting of
distributed reinforcement in the optimized reinforcement shear wall increases the structural
steel consumption slightly, but improves the structural ductility to a certain extent under the
premise of ensuring the structural bearing capacity.

Finally, by comparing the optimized calculations of reinforced concrete shear wall with
different aspect ratios and different axial compression ratios under low reversed cyclic loading.
On the one hand, the generality and stability of the evolutionary structural optimization
algorithm for reinforced concrete shear wall under low reversed cyclic loading are verified; on
the other hand, the effects of different design parameters on the optimization results of shear
wall under low reversed cyclic loading are discussed and associated design recommendations
are given. The results show that: with the increase of aspect ratios, the vertical members on both
sides of the optimal topology gradually behave as the thicker variable cross-section members
in the lower part, and the number of diagonal members in the mid span area
decreases.Continuous spiral stirrups or composite spiral stirrups can be added within 1/2 height
along the wall in the areas on both sides of the shear wall for reinforcement; With the increase
of axial compression ratio of shear wall, the material importance of both sides of the topology
is higher, the inclination angle of the evolved vertical members to the middle decreases, and the
number of inclined members in the mid span area decreases.It is suggested to add closed stirrups
or continuous spiral stirrups along the wall height at both sides of the wall to increase the
strength; Diagonal reinforcement shall be added in the 1/5~4/5 area of the wall to prevent shear
failure.

In general, the paper proposes an evolutionary structural optimization algorithm for

reinforced concrete shear wall under low reversed cyclic loading considering the material
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nonlinear characteristics of reinforced concrete, which can effectively assist in the establishing
a strut-and-tie model to reflect the force transmission path of the structure and ultimately guide
the reinforcement design. This new method designs shear wall with better energy dissipation
capacity and less prone to brittle damage. This is a pioneering attempt to rationalize the seismic
design method of reinforced concrete shear wall and to improve their seismic ductility and
energy dissipation performance, which has greater scientific significance and engineering value.
Keywords: reinforced concrete shear wall; topology optimization; evolutionary structural
optimization algorithm; strut-and-tie model; low reversed cyclic loading; seismic design;

Finite element analysis
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Fig.2.1 Optimization process based on linear elastic analysis under unidirectional load
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Fig.2.2 Optimization process based on linear elastic analysis under repeated load
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Fig.2.3 Symmetric processing of strain energy index
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Fig.2.4 Optimization process based on nonlinear analysis
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Fig.2.7 Topological process of elastic topology optimization under unidirectional load
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Fig.2.8 Topological process of elastic topology optimization under repeated load
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Fig.2.9 Topological process of nonlinear topology optimization under repeated load
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Fig.2.10 Topological process of nonlinear topology optimization under unidirectional load
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Fig.2.11 Michell truss structure
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Fig.2.12 Topology results for each case at 58% volume ratio
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$35E ETIRIMUL-STM 1 RC B 18EHE R
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R RIRERA 58 3 s A2 IHLEL . I AERMGE IR MU TTE, BE A XU 1R
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BAFXX 3 7 8 Sy R A 0 EAAR e A R e 07 LU A AR PR RE R e [R], DAIE— D552
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3.2.1 ETHIMAER STM W2
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S E TR 7Ry ok, RS R s R B A, 78 STM Kt &
SO T AR K ST, WE 3.1(a), BLRIAIIBAIEIEAT, & 3.1(b).
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Fig.3.1 Bottle press bar
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Fig.3.2 Classification of nodes
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Fig.3.3 The simplified process of the four forces
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Fig.3.4 Topology optimization guide to establish STM
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3.2.2 STM i J1 3R fi#¢

ARELEE 290N R EEAE b, WIEEAT R, [E5 5. RS
NG RO E, 5E T STM IR, FRYE STM i SR % it. STM
— TR — i # A OL F EAT R T, (S RIE KT B AR R 2 B R E AR A
Wt B SCER[86]HH IR L, 73 ATHEE Pry P2 AR R A A7 3R AE FH7E STM B 77,
BP0 B A RIS U T 20, B s ), TR B 5. B nkE
i %, P11 STM H4h ) o0 A il 3.5(a), fAEOLE NG R WKl 3.5(b) s, Hrart
@%ﬁ%%ﬁﬁ,%@iﬁﬁﬁﬁo

-

-70.04

wl / ©
d 4 N ¢
T /e o) '
V
T S
(a) P1 fur#AEH T HI STM (b) fLgLE

KI3.5 SRR NI EE LI STM 1% /) Al I fo. 45 45 51

Fig.3.5 Axial force solutions and their envelope result of optimal topological STM constructed
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Fig.3.6 Reinforcement design
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3.3 RC BY /185 A R ofh B4 #r

3.3.1 ABAQUS & fEif
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Fig.3.7 ABAQUS Analysis Process
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Fig3.8 Design process of SW2-1-3
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Fig.3.9 Finite Element Model of SW2-1-3
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Fig3.10 Comparison of experimental and simulated skeleton curves
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Fig.3.11 stress-strain curve
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Fig.3.12 stress-strain curve
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Fig.3.13 loading system
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Fig.3.14 Finite Element Model
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Fig.3.15 Hysteresis and Skeleton Curves
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Fig.3.1 Reinforcement amount
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Fig.3.16 Schematic diagram of equivalent viscous damping coefficient calculation
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SEOR A LB R BT BT G5 R B R R RE R S IR s B S5 A — ELAL TR R B
B U e LU AE, 78 TREPUE /BNl 45 M FERERE I E B bR, BARTHH A
LURE
LX SBCD+SDAB (31)
2” SAOCC' + SAOAA‘

BY DI RE S M B B R B e REUL ISR 3.2, =3 PSS ROk A FHJE R ECKER
FEBARIT, A A G T AR D B 3, FERERE VTP MR . INEYI T SW2-1-1 F1 SW2-
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W6 o A B N IR B, SW2-1-1 (S ek TH Je R A 2. SW2-1-2 F /Mg EF,
MN#EZE 16mm K, HIEHE, SR ATR G, SW2-1-1 IE{EAF I T, SW2-
1-2 FERERE JIRI AR E o KRN — e A2 L kaz 17 IREE LR 243 A,
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IR 555 T 52 4 0 KR i, G5 R (P R SR I A8 G K . SW2-1-3 HISE UK BB 244
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Tab.3.2 Equivalent viscous damping coefficients under different loading stages

h o=

[§

I

hie
SW2-1-1  0.103 0.097 0.125 0.209 0.264 0.298 0.324 0.351 0.396
SW2-1-2  0.105 0.091 0.119 0.202 0.256 0.292 0.312 0.334 0.353
SW2-1-3  0.115 0.107 0.132 0.218 0.272 0.306 0.328 0.348 0.362

i EIA AR P/MRER T i IFERERE 71, B 3.17 9 SW2-1. SW2-1-2, SW2-1-
3 [ R AR SRS TR SR AL A (M 2k . X B AT A, = ORERE AL I AR R 2 TN
LRSI N BN, Hodh SW2-1 F1 SW2-1-3 IR ERasAML, M vt BR #
FAREREHIZE B TR, R RUNMI e A 4 T, AN SR B T 2R B LA 2 4 7T,
MR R, AR BAFIFERERE J1; SW2-1-2 TEM RN BRI BLfS, [
WATEHTE T, PAFFEREHZ— B AT SW2-1 il SW2-1-2 2 F, X it B AL E A i it
(Y8 B AT AR TE R, AR 4 M AR e T £

MGG TN B M EAL LR B 16mm B, SW2-1 {3 [ B4 AN SW2-1-2 1)
Jiir [l R 28 T AR ) 1.26 1%, SW2-1-3 ()3 [l P25 THI AR Dy SW2-2-3 Fls [Rl A0 24 T A ) 1.28
B, TG IRAEIESE S HEAL STM T8 G5 W v ¥ BY J 55 LU 2 RER Y 3R 47 e 795
W B sk A AP IAERERE /15 (EALALEC I B BY Jikarh, o3 AN 45 1 I FERE RE
TR AN

mm 3mm 4mm 6mm 8mm 10mm 12mm 14mm 16mm

41-



%3 & T HIMUL-STM ¥ RC By RaHiiE Bt 752

—e—SW2-1-1
94 ——SW2-1-2
——SW2-1-3

T
0 2 4 6 8 10 12 14 16 18
1§ (mm)

K317 SRR RE 5 TR AL RS 25

Fig.3.17 Single cycle energy consumption and vertex displacement curve

3333 ZhiG=HE
FEA5 B T AT A0, b B2 47 451405 DA R 2 R0 0B N AR 7= TR ke 6 7 45 W L 4 1R T e 5 Tl
INITEAS « 23045475 (tensile damage) 745 BR 7T I IE T 22 4% FH 1% E 2488 0 A 2 3. SW2-

1-1. SW2-1-2 1 SW2-1-3 (152 hi 615 = B~ & 3.18 fIions
-

DAMAGET
(F3: 75%)

+9.610¢-01
+8.809¢-01
+8.008¢-01

+7.207¢-01
+6.406¢-01
+5.606¢-01
+4.805¢-01
+4.004¢-01
+3.203¢-01
+2.402¢-01
+1.602¢-01
+8.008¢-02
+0.000¢+00

(a) SW2-1-1 Z it =
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DAMAGET
(F3: 75%)

=

+9.610¢-01
+8.809¢-01
+8.008¢-01
+7.207¢-01
+6.406¢-01
+5.606¢-01
+4.805¢-01
+4.004¢-01
+3.203¢-01
+2.402¢-01
+1.602¢-01
+8.008¢-02

+0.000¢+00

(b) SW2-1-2 ZHi i = K

DAMAGET
(P13 75%)

+9.610¢-01
+8.809¢-01
+8.008¢-01
+7.207¢-01
+6.406¢-01
+5.606¢-01
+4.805¢-01
+4.004¢-01
+3.203¢-01
+2.402¢-01
+1.602¢-01
+8.008¢-02
+0.000¢+00

(c) SW2-1-3 ZZhi#5i45i =
B13.18 A =
Fig.3.18 Tension damage contour
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M B 3.18 ATLAE th, =38 S2hr i 1 434 v B R B AR AL T4 4k 2/3 X35, By
M 244% B R B LK o T R 5T, SW2-1-3 w8 4 o 1] X S8 52 P 4 5k
FEE, U2 XIER L I TR A EE, T SW2-1-1 AT SW2-1-2 [ A 4%
FERERD Ul BAE SO M R AR AGEC 5 15 v A0 B g Bk A SR e T A D, B
T 7R KR T .

3.3.3.4 ERIEH N = E

SERIBMENAE (equivalent plastic strain & /% PEEQ) J W AR ik 2 by ik 1 Y8 M 45
i BREE R, KT 0 B SRR G R A T . EROB MR 2= B & 3.19 Fis.

ATLAVE = BY 85 1) 55 RO N AR 2 AR B A = B 1/5 N, SW2-1-1 AT SW2-
1-2 [ K IB M AR e A T B AR AN R A AL, RS 55 e O (1 VR gt 3 ok, s &
Sk, A MRS T SW2-1-3 [¥B I NAR AR NI, RS2 R\ e RS
TR L AR T 4 1) BY g 3 0 R AR . IR B A AR T BB I AL Ve L e IR, B 7 A B
B, TR S X8 T A B A, BN, TS &
THIIBY R R AE SR AR P 52 IR B A, R B L E R BT ER T RIS,
WS 5% 5, SROEENAHE KR, H SW2-1-2 FEE T oM, —efEERs
PR &S A7, BBV A AN T SW2-1-1. SCHR[SS]H RS, BAVERIIAIX Bk
BE AR B B R AT SRR K E 7, # SW2-1-1 AT SW2-1-2 HIARBR &R fm% KT SW2-1-3.

PEEQ
(F3: 75%)

+4.277¢-02
+3.920¢-02
+3.564¢-02
+3.208¢-02
+2.851¢-02
+2.495¢-02
+2.138¢-02
+1.782¢-02
+1.426¢-02

+1.069¢-02
+7.128¢-03
+3.564¢-03
+0.000¢+00

(a) SW2-1-1 253408 1H: N A7 7= K]
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PEEQ
(F13: 75%)

+2.999¢-02
+2.749¢-02
+2.499¢-02
+2.249¢-02
+1.999¢-02
+1.749¢-02
+1.499¢-02
+1.250e-02
+9.997¢-03
+7.497¢-03
+4.998¢-03
+2.499¢-03
+0.000¢+00

(b) SW2-1-2 S50 14 |3 A8 7 &

PEEQ
(F3: 75%)

+2.497¢-02
+2.289¢-02
+2.081¢-02

+1.873¢-02
+1.665¢-02
+1.457e-02
+1.249¢-02
+1.041e-02
+8.325e-03
+6.244¢-03
+4.162¢-03
+2.081e-03
+0.000e+00

L

(c) SW2-1-3 ZERU M N AR =
’3.19 R B v N A 2= 1K

Fig.3.19 Equivalent plastic strain contour
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53

T T IRAMUL-STM ) RC BY fyBS = vt /712

3335 5N A= E

NEI3.20 =BT BRI SRR ) =

S, Mises
(FH: 75%)

+2.255e+01
+2.067e+01
+1.879et01
+1.691e+01
+1.504e+01
+1.316e+01
+1.128e+01
+9.397et00
+7.518et00
+5.638et00
+3.759e+00
+1.879¢+00
+0.000e+00

(a) SW2-1-1 JR#&E T 555808 71 =

S, Mises
(FFH: 75%)

+2.349¢+01
+2.153e+01
+1.958e+01
+1.762¢+01
+1.566¢+01
+1.370e+01
+1.175e+01
+9.788¢+00
+7.830e+00
+35.873¢+00
+3.915¢+00
+1.958¢+00
+0.000¢+00

(b) SW2-1-2 V¥t + 55X 1 =
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S, Mises
(FFET: 75%)

+2.442e+01
+2.238e+01
+2.035e+01

+1.831et01
+1.628e+01
+1.424e+01
+1.221e+01
+1.017¢+01
+8.139+00
+6.104e+00
+4.069¢+00
+2.035¢+00
+0.000e+00

(c) SW2-1-3 JR#E 55380 7] == K

8, Mises
(FE: 75%)

+4.550e+02
+4.171e+02
+3.792e1+02

+3.413¢+02
+3.034e+02
+2.654e+02
+2.275¢+02
+1.8066+02
+1.517e+02 | |
+1138e+02 ||
+7.500¢+01 h

+3.799¢+01 | |
+7.628e-02 Jﬁ. N
|
1

(d) SW2-1-1 4N 5 RN ) = 1]
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8, Mises ' i / N
(Pt 75%) | ‘

+4.550e102 | [ |
+4.171e+02 | || Ml
+3.792¢+02 | |

+3.413e+02 | _ AN

+3.033e+02 ) '
+2.634¢+02 \ /

+2.275e4+02 | ||
+1.896e+02
+1.517e+02
+1.138e+02 '
+7.583¢+01
+3.792e+01
+0.000e+00 [ ™

| |
5, Mises 1| |
(FE: 75%) =
+4.550e+02 | CT
[ +4.171e+02 . e
+3.792¢+02 | L L1
+3.413¢+02 =] L]
+3.033¢+02 L T ]
+2.654¢+02 T
e
+2.275e+02 | = u
E 1l 11896er02 | ——
+1.517¢+02
+1.138e+02 o - —
+7.583e+01 | —— —_—
+3.792¢+01 | - :
+0.000¢+00 —
;'_'_» i
i) 1
= S )
1 1]
8 Y Y O
! B |
I3 I _Tf :
S A R =S

(f) SW2-1-3 Wi % 2. 77
K13.20 RN ) = K

Fig.3.20 Equivalent stress contour

NI
25|
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M B 3.20 FTRAE HY, = v 3T S i v ke 55 RO A B/ R Ak s, BOKN
TIRHESAR S s — M o347, A% BLE AR B N80 e 17 32 IS M A, Herh SW2-1-2 JR Bt 1
SERNL T T REA L 1/3 JEROK, I8l AR L XA Y A AR A X, AN AT
Bz, AT MY

MRS L3 50 AT o LUR I, S A e B 52 1 XA i K 2 2 Je iR, 52 T XA A 2
AR>S AR, XAARONE RN T, S R, SRR UK ERE
KRR, R BEA Bt 52 (AN 2 5 52 e, BETH IR BT =4 fY) P 4 17 s A A
975 LB 55 52 1 5 1) M 5K, 36 R B S s SW2-1-3 (R A4 o 8 DA B a6 kb 8 60 4 A 1
TIRIREF BRI, AR AR Z R RAL VA S 030 25 52 1 R AL R N 17 B0 43 Jst Al » 1717 SW2-
1-1 A1 SW2-1-2 [RIEMff3 L J AR R 73 A5 A BE NI 50, SER AW A R 5 g, (4945
FAT EAEIFERERE /15 SW2-1-2 H I 0 AN A3 R I 048 74 77, (L3 4552 1
B5), SRR i, PRUESS M ARSI HIFEIR, 8558 7 FERERE /T

3.4 KE/NG

AR FERRYE S R R R R B AT EAE R T RC BY JikE ESO 15 2 HhH FMi# 37
T STM, i PR A5 K ) R Ar 4890 3l 56 B0 2 23 i, SORF A2l 7 1) B, 2 4 4 2 S B
Bt AN A BT 2 B ABAQUS A FRCHAHT TR CIRIE TIE, G =H
BY RS AT A PR O E AR, XL TR (L E S N B iR SW2-1-1. i
LB (ECE AN ) B 8% SW2-1-2 FIF D 5 87 /155 SW2-1-3 152 f1 1 fg.

1) ARFEXTE R0 AT R T 558 45 BV & BT, Bk 1A TR 0A R
JUREAI AT LTI RC BY F 55 (1 HE B8 §E 7 R IR & 2k 77 -

2) A IR E A #EH R RC BY J78% ESO A LI 8 S STM, RIBRL G
) STM AT R A B 1t

3) {E/NIEIRDE A B I LR 58 A R A IC 57 14 BY 1% f B AR 3k T FIAE B
JIERE RIESE T, "R R i EH T~ RC B9 /185 ESO ReWSiR4E T S i1 #Eh
JIBHT I RC B 3R

4) FERAGE AL (R A Sl b P A AN Rk SR TR L R T R L, N
TP R EE L PUR IR ST, A2 I TE NS A), Inag TR A A

o OF

NS
He
NS
He
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iR R s N e e S A7

A 598 AN e LU BY Jsm LA DUR vt IR e

4.1 #id

SRR TARE R B A B AR B 05 ESO %k, R RC BRI AT
WETE, PRACES R S 1 254 T B A 30 E TR 250 3 o A% J 742 LA R AS R IX S bt
B R PUR B B 2. SCHR[STIR WIS BY U ERE I I s A mise bl Hih
Jebt BEiA. MPRRREESE, ARFEDHITI T ARSE RC BT s U Fh a5 52
i, Bt BARIE R R AR e I S I

4.2 1= 98 LRI

4.2.1 BEHIHEN

RATHEBIEI 4 FE e AN ER RC BY ks, HrpsEsi sl 1.00 1.5, 2.0 Al
2.5, #%HWTANSWI-1. SWIL.5-1. SW2-1 fl SW2.5-1, BEKEEE. 9. AREKMS
IR BT ke R e Al ], AR E BEA AN E, BARM AL an & 4.1 Fos
(U5 SW2-1 MRS SH AR 2.5 A HD . K BT RSB SR AT 1 b
SO, BLADNI P A ] 5 AE TR, T BY RS TR AT s SN LA By 1 s A R AR

JRIFRA o

1960
1000

558

# /
b 1000 200}
1400 J
(a) SWI1-1
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s
g i
3
— A ¥ s S -
/
J200) 1000 200}
_ x 1400 7
(b) SW1.5-1 (c) SW2.5-1

4.1 ANIR] v T8 LL BY 0 BS AT 46 LT Hk
Fig.4.1 Initial design domains of shear wall with different aspect ratio

AIRTTHHTIF, L solid65 J\T s SEARFITAAREE L, KM R, KA
SHACHENAT Von mises JEARAEN, MBI ZHGEWT, BEELRA C30, #EfiE
E=20000MPa, jHFAL 1=0.2, BI040 A S0mmx50mmx62.5mm; 8 SEH £ i B
ANTE 3 ] BOC A AR L HRB335 AW A R e TRk -2 O 1 A5, DO BT i =
AN B8 7 1 (A A I A 5 05 TR AN A B Dy A 48 LA 1k Jy R s R EAAZ 5L R
Z 5 R

4.2.2 HIME

o EEA 1 SW-1 AL WIEE I 4.2(a) o, SRR AR A2 M T
4.2(b)~(e), K 4.2(H)NiZEY 155 I B AL I o
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(a) ¥IERIRTHEH: (b) ARSI (c) HFEIRT IT

(d) SR I (e) WREHIH IV (f) Hpisnib
Kl4.2 SW1-1 i fhid 2
Fig.4.2 Topological process of SW1-1

AR, Bk BRI R T IR, ] 4.2(b)s BEJE DUAGLERSE AR Hh X A
A7, W 4.2(c)s B A A7 B TGO IR T B £ B8 A o 350 T2 At 1) 28 SURF A, Wi 4.2(d)
(e); EMIRFN T LARE ST PR PN OR B B [l A 1 6t A S 4 1 T, T3 2
3/4 AbWE SR B I R R AR, AR SRR RO A T E “ X7 BRI RS AT &
Mo ERIJLIRTY, HEmm BT S BB MIaE i 1 2.28 fi%.

mTE b 1.5 BT Ji8s SW1.5-1 MR M A2 R BB R . SW1L.5-1 16 Fh
Kl 4.3(a), EAH I RERIMIE 4.30)~() i, K 430 Nmitihfh.

(a) WIhadndhalitl (b) LFEHIN I (c) dRESRIN 1T

(d) EFEFRFH I (e) I IV (O mAsFh
Kl4.3 SW1.5-1 fJ#R i 2
Fig.4.3 Topological process of SW1.5-1
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M 4.3(0)HTE 4.3(c)FT LAE H, SW1.5-1 AL AT A 3= B M BEAR TR R HEAT ;33 ik
IR T T TR RS i X4, & 4.3(c): BEE S ITMIBRAS B g N, ke X
IR TR TR Bt 058 AR, i 4.3(d). (o). ME 43(DFTRHIBACIHANAT LLE Y, AT
REMCEENEMT, AT LASr Ay e 0 i) R ) AR AT Ry ) “X7 TEA8 SR,
A ) U e A DN A b B R A R i 29 D0 43 2 = AR, p A 0 ) R TR AR o RN I RE
H MR BRI s S BRI INEIN T 1.87 £ .

SW2-1 [ EAMMRAGTFE O eS8 — F e IR, A ——3AR. &9tk 2.5 8Ty
% SW2.5-1 (IR AMEAL LRI R TR . SW2.5-1 [IHIEAIH MK 4.4(a), IEMA PR
AU 4.40)~()F, B 4.4(091%8 185 AL 4h

(@) PN 1 (b) RN I

(© MR IV T
Kl4.4 SW2.5-1 (3R

Fig.4.4 Topological process of SW2.5-1

() iR I
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PR FIA S ERIR B LR I0, K] 4.4(b); H9E £ BENE SRR EE h X $ 1 B e,
B 4.4(c); SRR ARITEAL TR AR, Ss AR A B R R AT RE RPN X3, 4
K 4.4(d) (e)s ME 44D LR M, HEm e EZ =80 A Pl mirfFT
SR Z) 1oy 2 — b R IaMEURE, SRR AR OR B T NIETE I <X RIS R,
T EEAE _E AR TP AR AR A A BEROR, SR IR AR AR 52 Ay BE /N FLAE A 2 48 17 45 £
NS AENTJLRT, Hse U I S A2 Bl iathdh g in 1 2.82 f%.

423 735tk

UG Y, U AN a BRI T A B AR G5 R T A IR T, AiRAS T e
B SACRAL T 35 . e PP FD (P00 DX 3l At B RO AT, 3K DR DA PE KT i 284 P
N AR R S L, TN B KR R R, R EATEAE T, B AP X AL
THo. IBREIRE, BRAEDER, MURE T ORERIT; B b DA R 28 XRHE
P AT, Su AR RS Hh XIS R R AT PH AR D e 7 R AR A B 7D TE B ok o A T 55

W5 o8 LRI N, — D5, SR DR S i X )k 1 S SR R R D . X A
N B B e BRI N,  AA B KT AR B B T s B S B R A R
T (BIR R EER D, AR AR I, s X R A B g . 07
T o DR 9 00 X 3 10 25 T AP vt — S VL TR A R IO AR AT A, G s vl g
AR 7 B, X KDy AR R B IR, LA 0 R T AL, ShAh R R
P T o BINE R, VBB, BRERK, TR RIS R, s kPl
RE RN B AT TR T,

4.2.4 AFEEFEET RC B 7RSS B TN

REFEIEHT, AR E SR, S X s 10 W] (0 B A, JF
Tha A LB b DR, B S o X A TR R Y S SR, T A SR AR R X
SR B LR AP A LB i Y AR 7T, SER “amRBY 9 E T it

[t 5 it R P R TN, B AR SRR Y 25 AR I ) S, RTE BY T (I G 1 i B
WER v i A5 0 AR WER ke i A S2E AT AN 5, AN S5 VR M B DB INC A B UH I A R, 14 A
AT G R T ) T o =00 2 — AT L. 53— 7 1T AT CAC LA P A0 ) B3 2R ]
SCHE AR SRR 52 S R R A BY UIRER, B SmEE R A Itk T R 1 4 S5 P I R
RN R AR A A L, A eh AR A [ e M KT 900, Bk iR Z
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4.3 & LRI 520
4.3.1 BB

AU = 9 1500mm A 2000mm 15 38 FEAS [B] 5l b HAa Mg i sz o
Hh 2 8 i R EG AN [E] B RS 5y 1500mm AT 5 2000mm 8T /8% A T4l R o~ 0.1.0.2,
0.3 K& E% 5 N: SWI.5-2. SW1.5-3. SW1.5-4 il SW2-2. SW2-3. SW2-4, Efk
JURTRSE L E B 4. 1(0) M E] 2.5 fros, HRZ809 5 EM R S o 28T 5.

N
I (4.1)

b N OB s pT s e 5 ) CRRAZ: NDs fac ATREE L UL SR EEFRHEAE (FRAZ: MPa);
A FoR B AT AR CRAL: mm®).,

n=

4.3.2 HIME

4.3.2.1 HREH A 15

AT IR I B EEON 1.5 B Ju R E N A 4, it AS [E) e e D
TEHN 0.1 HiEE T SW1.5-2 3R ML L .

(a) WIgRFnFhas (b) IR T (c) LRI
(d) 2SR 1T (e) HFEHHA IV (H mia$h

Kl4.5 SW1.5-2 fJhhid 2
Fig.4.5 SW1.5-2 Topological process of SW1.5-2
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SW1.5-2 BY J7 3 Ao Ak 40 AR 4R TH0 500 1 D R B ARG, S pidik, Wil 4.5(a); Bl
J B AR o X ) B TR IR, I 4.5(c) (d):  HEAA ) X e 5 B A 22 1) B T
e B b, BT RS 2 12 Ab s A ) e A BERY, W] 4.5(e); B
TR AL =08 “X7 TERHA S XA, Hrh A 5 R R AR, TR WK AT
i, El 4.5(0). ENALRT, HRBH R ARz MIEm g m 7 3.53
fio

T 4.6 502 HEEL T SWI.5-3 (3R ML .

(a) WIURIhINGS (b) RFEIRIM I (c) MR I

AR R

(d) SR 1 (e) MR IV (H wmMHHh
Kl4.6 SW1.5-3 () 4h it 2
Fig.4.6 Topological process of SW1.5-3

ATLAER], 1 Jans LE 2Rk ARG, WK 4.6(a) (b); BEERALE
HAT, SWL.5-3 AP X Sl dsi 4 th e ) FF A, ] 4.6(c)s FR A TR A0 Hi B0 22 1Y
A8 SR, A 4.6(d) (). meALFa, RhAZE SUMFBWHE MW, AR —iE 3 %
ot a4z, WO DX I B8 AT T84 i 2 2/5 Ak R e BiA B 4.6(f). 18R 21K
T, HERHEA R SRR WG INE I T 2.01 £5.

N 4.7 /& 0.3 #EH R SWI.5-4 B Mt 72

PRACTF AR, B 5 v DX 3 R R B N B B e B, Gl 4.7(a): SR VS 44 B3
PRAN DX B e vaIR, ] 4.7(b)s FEBEE MIBR ZRH3E 0, BefRrh il —1E “X” et
A2 SO, WP 4.8(c) (d): BeAtth o sE AR i A TR RN, 188 e A A T
B2 /3 Ah R, il 4.7(0F R fERLIZRTT, HEs R R T s R A
ZHIEINEIN T 2.03 £,
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(a) HIURHH NG N (b) AT T

(o) RN I

(d) R I (e) HALInAEEH
4.7 SW1.5-4 [ 3R 12
Fig.4.7 Topological process of SW1.5-4

FA1FIH T @A 1.5 BEASEE BT R S A 45 R ) S R AR RE EUAE . AT R
AR, MFEMERZET, UAKFRESE L ETHRRFE N, S5 FERERE JI 1S 98 .

4.1 AKX
Tab.4.1 Optimization level comparison
SW1.5-2 SW1.5-3 SW1.5-4
C
% 1.9865 2.8018 3.1518

in

FE: C, NVHGTRANEUS ARSI RE,  C, . ATRAIERI Ty 8% AR IS e .
4322 ERltRN 2

Ntk — 5 F LAl s L MR 45 SR SR B R, AR IR T LA 2 BT 4
VERNWF T 5, N R #h ) S . 0.1 FlE R SW2-2 BT A B% 4R M4k i F 4
TE 4.8,

MK 4.8(a). (b)FTLAE H, RACHIIAEZAER AR BT A RAGEEAT, S5k L
BRI GRBE A R ET A MR W 4.8 (¢)s (A)FTR; BRI ST AL T R )
XA, WK 4.8 (e): RIS Hh R TR A DX S R T A AR B, B R A A
XA B A KA I, P90 ) A T it e 20 — 9 2 — Ak iy e AR, a0 P 4.8(6)
Fiome LEN 2R, Hap R BE T b S B B W AR A S N T 2.20 %
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(a) Wi IR (b) AR T © R I

(d) LSRN I () IR IV () EAeHAH
4.8 SW2-2 [ hid 72
Fig.4.8 Topological process of SW2-2

0.2 4 JE LN SW2-3 BY BS R ML A2 i R 4.9,
SW2-3 Ak B B R 5 o X 4k S B oG, aiE] 4.9(a) (b)s B BRI X
AR TR IR, W 4.9(c); SRIGIZRETY BRI A XA, il 4.9(d) (e)Fim: &
e P00 28546 T AN R B A AR AR, B DX DU “ X7 Rbm) 28 KRR AR, 0
Kl 4. 9(t)ﬁﬁT fr“jjé’JEEF FO AR N RS T P S5 A S B 2 WIREFRAME N T 1.84 £,

(a) FIEaInINEEHY (b) IRESHAN T (c) REIRIH 1T
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(d) EREH I (e) LI IV (H wALIHILH
Kl4.9 SW2-3 [¥fihid f2
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